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ABSTRACT   

When developing a predictive tool for human performance one needs to have clear metrics to 
evaluate the model’s performance.  In the area of Visual Attention Modeling (VAM) one typically 
compares eye-tracking data collected on a group of human observers to the predictions made by a 
model.  To evaluate the performance of these models one typically uses signal detection (Receiver 
Operating Characteristic (ROC)) that measures the predictive power of the system by comparing the 
model’s predictions for an image to human eye tracking data. These ROC curves take into account 
the model’s hit and false alarm rates and by averaging over a set of test images provides a final 
measure of the system’s performance. In releasing a commercial visual attention system, we have 
spent considerable effort in developing metrics that allow for regression testing, that are useful for 
optimizing our visual attention model that takes into account the Upper-Theoretical Performance 
Limit for an image or classes of images.  We describe how the Upper-Theoretical Performance Limit 
is calculated and how regression testing and parameter optimization benefit from this approach. 
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1. INTRODUCTION  
Regression testing is critical to all software products. Often times there is a need to make sure that 
changes to the algorithms do not adversely affect the performance and accuracy of the software 
program. One of the challenges in doing regression testing and optimization predicting human 
behavior is that even under the best conditions there is inter-observer variability. In the area of 
Visual Attention Modeling researchers have measured human eye-fixations as a measure of what 
people are attending to in an image.  To evaluate the performance of a model they then compare the 
model’s predictions to that of the human behavior (i.e., the fixation data).  In the case of eye 
fixations, there is a great deal of overlap between individuals, but there still is a certain amount of 
inter-observer variability and often times this variability will change on the types of images being 
evaluated (e.g., photographs vs. human generated graphics).  

Since changes to the algorithm of a visual attention model can cause a pixel-by-pixel binary 
comparison of image output to fail, using a “golden standard” is inadequate for regression testing 
and model optimization.  Instead, there is a is a need to develop metrics that are robust to slight 
changes in the predictions  while indicating when changes to the algorithms causes significant 
degradation. Furthermore, regression tests need to validate all system output such as fixation 
regions, and viewing probabilities, heat maps, and stability to slight changes in the input.  A robust 
metric would not only take into account how well the model is predicting human performance in 



 

 
 

 

absolute terms, but it will also evaluate the model’s performance relative to the variability for an 
image type and/or for a particular image. In this paper we describe the use of a Performance 
Efficiency measure that compares the model’s performance to the Upper-Theoretical Performance 
Limit performance that takes into account the inter-observer variability.  In the case of visual 
attention modeling, the Upper-Theoretical Performance Limit is bounded by the inter-observer 
(human) eye fixation variability for an image.   
1.1 Visual Attention  

The human visual system is capacity limited in a number of ways.  To begin with, the human retina 
does not provide high resolution, high-color fidelity information across the entire retina.  Instead, the 
center two-degrees of visual angle (called the fovea) are packed with small photoreceptors called 
cones that provide high resolution and color information. Outside of the fovea there are fewer cones 
and more rod photoreceptors that are used for low-light viewing conditions(Wandell, 1995). 
However, the human visual system has adapted to this heterogeneous photo mosaic by using rapid, 
saccadic eye fixations that rapidly moves the fovea from one region in the image to the next. These 
rapid saccades allow the human visual system to rapidly sample the scene with the high resolution 
fovea and over time, using visual memory, it “stitches” together a high resolution representation of 
the scene.  It is well known that these fixations are not random (Tavassoli, 2009) and the initial 
fixations are well predicted by image properties such as color, motion, edges and contrast (Treisman, 
1980). Because of the systematic selection of regions by the visual system based on image properties 
in the first few seconds of viewing an image, there has been a great deal of research in Vision 
Science and Computer Vision to develop theories and predictive computational models of human 
visual attention (Itti, 1998; Zhang, 2008).  These models make explicit predictions about where 
people will initially look when viewing complex scenes such as shopping malls, streets, magazine 
pages, web pages, advertising content, etc. These models are typically based on the findings from 
behavior research in vision science (Itti, 1998) or based upon image statistics (Zhang, 2008).   

2. PERFORMANCE MEASURES 
Although these models are based upon fundamental findings in vision research there remains a 
certain amount of inter-subject variability and some unknown properties of how the visual system 
“decides” where to sample next.  Given these sources of uncertainty, one would like to have an 
objective measure on how well a particular model, algorithm, or set of parameters is performing.  
One common way to evaluate visual attention models is to compare the model’s performance to 
human eye-tracking data. Humans typically fixate their gaze (i.e., place their fovea) on the location 
that they are currently attending.  Therefore, eye-fixation data serves as a surrogate to what people 
are actually attending to in an image. Eye-tracking equipment measures where an observer’s center 
of gaze is as a function of time.  However, models of visual attention do not make point predictions 
about where a fixation will occur, but instead provide a “heatmap” representation showing the most 
likely and least likely locations that the models predict (see left image in Figure 1).  This makes 
comparing eye-fixations directly with a visual attention model heatmap a challenge.  

 One method that is typically used to evaluate the performance of a heatmap to the actual fixations is 
to use a Signal Detection Response Operator Characteristics (ROC) (Green, 1966) that take into 
account how well the model correctly predicts where human fixations  will (hits) and will not occur 
(correct rejections) along with the incorrect predictions (false alarms and misses).  ROC curves are 



 

 
 

 

calculated by measuring the regions that the model correctly predicts a fixation will occur (hits) and 
incorrectly predicts (false alarms) across multiple thresholds of the model.  Figure 1 and Figure 2 
illustrate how one can take the output of a heatmap and generate progressively more liberal 
thresholds to generate more-and-more liberal predictions. The left image in Figure 1  illustrates a 
“heatmap” representation of the model’s prediction where the “hotter” areas (reds) indicate that the 
more likely places that the model is predicting that a fixation will occur and the “cooler” colors 
(greens and blues) are less likely to receive visual attention.  The right figure in Figure 1  shows an 
example of the thresholding maps where white indicates that the model’s confidence is at or above a 
given threshold and the black regions are all of the areas that are below the model’s threshold 
confidence. The illustration on the right side of Figure 2 shows an ROC curve that shows the 
predicted Hits X False Alarm rate as a function of the model’s threshold value.  By calculating the 
area under this curve one can generate an ROC value indicating the model’s overall accuracy 
(Green, 1966).  These values range between 0 and 1.0 with 1.0 being perfect performance and 0.5 
being chance performance. 

 

 
Figure 1. Illustration showing how the heatmap is thresholded to generate the different levels of prediction.  The 
upper left image shows the “highest” values from the heatmap.  Going from left-to-right and top-to-bottom we 
show increasingly lower threshold values  

 

 
2.1 Upper-Theoretical Performance Limit 

ROC calculations provide an objective, absolute performance measure for a particular model’s 
image predictions. Although ROC values are objective and useful there is a particular weakness 
associated with them when evaluating human eye-fixation performance.  That is they don’t take into 
account the natural variation in the eye-tracking data (i.e., between-subjects variability).   



 

 
 

 

 
Figure 2. Left: Heatmap predictions generated by a visual attention model. Center: Eye-tracking data for multiple 
subjects collected on an image.  Right: Example ROC curve for a Heat Map generated by the visual attention 
model. The Y-Axis measures the number of hits for a particular threshold while the X-Axis measures the number 
of False Alarms for that threshold value.  

Typically when one runs an eye-tracking study they will collect data on a number of subjects and a 
number of images to try and reduce the amount of inter-observer variability.  However, unlike most 
sampling theory problems predicting human eye-fixations has an interesting twist.  In typical 
sampling theory problems, one generates more samples because there is “random” variation.  In the 
case of human data and eye fixations, there is a certain amount of systematic variation that is 
generated based on the image type and even each individual image.  That is, the variability between 
subjects will also vary as a function of image with some images having low inter-observer 
variability and others having high inter-observer variability.  Without going into significant detail 
the inter-observer variability provides the upper-theoretical performance limit of any predictive 
model’s performance. That is, the upper-theoretical performance limit for predicting eye-fixations is 
the ability of one visual system (one person or group of people) to predict the fixations of a second 
visual system (or group of people).  Stated in a different way, one can not outperform a model that 
fully replicates the human visual system. 

To measure the upper-theoretical performance limit we generated predictions using ½ of the eye-
fixation data (where the subject groups were randomly selected) to generate a Fixation Heat Map  
One can think of this as using ½ of the subjects as an alternative “model” that measures the upper-
theoretical performance limit. To generate the predictions we convolved a Gaussian kernel at each 
location where there was a fixation from ½ of the subjects.  The Gaussian kernel was approximately 
2-degree of visual angle (given the distance and size of the image used for the study), which 
corresponds roughly to the size of the fovea of the human eye (the high-resolution center 2-degrees 
of the retina) and within the resolution of the eye tracking systems used. The Right image in Figure 
4 illustrates the output generated by this convolution and the left image in Figure 4 shows the actual 
fixation locations.  We then used the generated Fixation Heatmap to predict the fixations from the 
second group of subjects using the ROC method described above. This ROC value provided us a 
measure of the Upper-Theoretical Performance Limit for each image. 



 

 
 

 

 
Figure 3. The distribution of  Uppeer-Theoretical Performance values for the York University Data set (Mean 
ROC=0.82), MIT data set (Mean ROC=0.89) and the 3M data set (Mean ROC=0.93)  

Figure 3 shows the distribution of Upper-Theoretical Performance Limit values for the different 
images for the for fixation data from the York University(Bruce, 2009) , MIT (Judd T., 2009) and 
data collected within 3M.  We found that the Upper-Theoretical Performance Limit from the York 
University data set had an average ROC value of 0.82. The 3M replication study predicted the York 
data with an average ROC value of 0.81.  This insignificant difference indicates that the methods 
and procedures used at 3M closely match those used at York University.  The MIT data predicted 
itself with an average ROC value of 0.89 and the 3M advertising data predicted itself with an 
average ROC value of 0.93.   
2.2 Prediction Efficiency 

Because, theoretically any model of visual attention cannot outperform Upper-Theoretical 
Performance Limit (within the random noise range) we use this measure to provide an objective, 
relative performance measure.  Specifically we were interested in measuring the model’s Prediction 
Efficiency relative to the upper-theoretical performance limit. 

 
 

Figure 4. Left: The combined fixations for 20 different participants who viewed this image in an eye-tracking 
study.  Right: A Fixation Heat Map representing the variability of the participant’s looked at this image.  

 

In order to calculate the Predictive Efficiency (i.e., how well a visual attention model predicts eye-
movements relative to the Upper-Theoretical Performance Limit), we calculated the ratio of the 
models performance to that of this theoretical limit (Efficiency=100x[ROC(3MVAS)/ROC(Upper-
Theor-Limit)]).  This measure provides an efficiency measure that indicates how well one can do 



 

 
 

 

predicting eye-fixations using 3M VAS versus actually collecting eye-tracking data.  When the 
efficiency value is close to 100% it means that the visual attention model is able to predict eye-
fixations as well as an actual eye-tracking study. 
2.3 Why use Prediction Efficiency? 

One may wonder what the advantage is of using Prediction Efficiency rather than simply using ROC 
values alone.  As a reminder, ROC values provide absolute measures for a model on a particular 
image, but it does not provide valuable information on how well the model is doing relative to the 
Upper-Theoretical Limit. For example, imagine collecting eye-fixation data on human subjects for 
an image of random intensity values.  A visual attention model’s ROC value would most likely 
approach chance predictive performance.  With only the model’s ROC values, one might incorrectly 
conclude that the model is performing poorly because it cannot accurately predict the human 
fixations.  However, in this case there most likely won’t be much consistency between human 
observers either.  That is the Upper-Theoretical Performance Limit would also be close to chance. 
By calculating the Model’s Prediction Efficiency by comparing the model’s ROC to that of the 
Upper-Theoretical Limit, (~0.5/~0.5) one can see that the model is doing about as well as it can for 
those stimuli (i.e., the Prediction Efficiency would be approximately 100%). 

 

 
Figure 5. Visual attention efficiency distribution as a function of image type.  The red line represents the 
histogram of efficiency values for photographs while the blue line indicates the efficiency values for graphics 
(e.g., advertisements and web pages). 

When developing a computational model of visual attention one may see the need to understand 
which images and/or which image classes the model makes good versus better predictions.  If one 
were to simply use the ROC approach, one might spend a great deal of effort trying to improve the 
model in places where there is little room for improvement (e.g., the random intensity images).  By 
using the Prediction Efficiency one can begin to segregate the image set to identify the classes of 
images that have “room for improvement”.  As an example Figure 5 illustrates the Prediction 
Efficiency for a visual attention model for photographs versus graphics.  As illustrated by this figure, 



 

 
 

 

the model performs slightly better on photographs than on graphical (man-made) images.  
Interestingly enough, the model’s ROC values are about the same for these two classes of images, 
however, the Upper-Theoretical Performance Limit is slightly different for these two classes of 
images. 

3. SUMMARY & CONCLUSIONS 

Visual attention models are complex with many inputs and parameters that can be manipulated and 
adjusted to give optimal performance. Using eye-tracking data we describe a method for evaluating 
Predictive Efficiency that measures how well the model’s predictions are relative to the Upper-
Theoretical Performance Limit—the human observer.  This relative performance provides an 
objective measure for evaluating how much “head room” a particular image and/or a particular class 
of images has in terms of improving the model’s performance.    

Measuring the model’s performance relative to the Upper-Theoretical Performance Limit allows one 
to focus their optimization efforts on images and/or classes where there is significant room for 
improvement.  Furthermore, in regression testing, this approach allows for regression testing based 
on image type.  Using Prediction Efficiency failures will occur only when the performance of the 
model is significantly below that of the Upper-Theoretical Performance Limit and not simply when 
the absolute performance is low. 
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